Dielectric permittivity, conductivity and breakdown field of hexagonal boron nitride
نویسندگان
چکیده
In view of the extensive use hexagonal boron nitride (hBN) in 2D material electronics, it becomes important to refine its dielectric characterization terms low-field permittivity and high-field strength conductivity up breakdown voltage. The present study aims at filling this gap using DC RF transport two Au-hBN-Au capacitor series variable thickness 10--100 nm range, made large high-pressure, high-temperature (HPHT) crystals a polymer derivative ceramics (PDC) crystals. We deduce an out-of-plane low field constant $\epsilon_\parallel=3.4\pm0.2$ consistent with theoretical prediction Ohba et al., that narrows down generally accepted window $\epsilon_\parallel=3$--$4$. DC-current leakage is found obey Frenkel-Pool law for thermally-activated trap-assisted electron dynamic $\epsilon_\parallel\simeq3.1$ trap energy $\Phi_B\simeq1.3\;\mathrm{eV}$, comparable standard technologically relevant dielectrics.
منابع مشابه
Superior thermal conductivity in suspended bilayer hexagonal boron nitride
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room t...
متن کاملFlexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.
Flexible graphene field-effect transistors (GFETs) are fabricated with graphene channels fully encapsulated in hexagonal boron nitride (hBN) implementing a self-aligned fabrication scheme. Flexible GFETs fabricated with channel lengths of 2 μm demonstrate exceptional room-temperature carrier mobility (μFE = 10 000 cm(2) V(-1) s(-1)), strong current saturation characteristics (peak output resist...
متن کاملHexagonal boron nitride and water interaction parameters.
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials research express
سال: 2022
ISSN: ['2053-1591']
DOI: https://doi.org/10.1088/2053-1591/ac4fe1